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Abstract

A modification of the Wiener index which properly takes into account the symmetry
of a graph is proposed. The explicit formulae for the modified Wiener index of path,
cycle, complete bipartite, cube and lattice graphs are derived and compared with their
standard Wiener index.

1. Introduction

Chemists employ structural formulae in communicating information on molecules
and their structure. The structural or molecular graphs are mathematical objects
representing structural formulae. By manipulating such objects, the chemical structures
can be characterized numerically.

A topological index is a numerical quantity derived in an unambiguous manner
from the structural graph of a molecule. These indices are graph invariants. They
usually reflect molecular size and shape.

The first topological index in chemistry was introduced by H. Wiener in
1947 [1,2] to study the boiling points of paraffins. Since then, the Wiener index W
has been used to explain various chemical and physical properties of molecules [3]
and to corrclate the structure of molecules with their biological activity [4].

The Wiener index of a graph represents the sum of all distances in the graph.
Various algorithms [5—7] were developed for the evaluation of the Wiener index. A
number of explicit formulae were derived for the special classes of compounds:
chains [1], simple cycles [2], cyclic structures with acyclic branches [8], spiro
systems [9], trees [10], polycyclic compounds [11], especially benzenoids [12-13],
etc.

Although the Wiener index has become part of the general scientific
culture [14], it is still the subject of intensive research [15]. Here, we propose a
version of the Wiener index which properly takes into account the symmetry of a
graph.
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2. Definitions

Every connected graph G can be regarded as a metric space on the vertex set
V = V(G) in which the distance d(u, v) between any two vertices is the number of
edges on the shortest path from u to v.

The first "topological index" in mathematical chemistry was introduced
by H. Wiener in 1947 [4]. In our notation, it can be described as follows:

WG)=5 Y 3 dwv).

ueV veV

The Wiener index of G, W(G), represents the sum of all distances of G.
If A and B are two sets of vertices of G, let us introduce the following notation:

d(A,B)y= Y Y d(u,v).

ueA veB
This means that
W(G)= 1d(V,V).

Let Aut G denote the group of automorphisms of G and let g € Aut G be any
automorphism. Define a distance number 6(g) of g as

1
8(g) = Vi Evd(”’g("))'

6(g) represents the average distance by which g displaces a typical vertex of G. If
I is a subgroup of Aut G, we will denote by &(I') the average:

1
s0= = T )= LSS du, gw)).

gel MVE JSev Jer
The distance number 8(G) of a graph is simply
(G) = 6(Aut G).
By V;, 1 £i<p, we shall denote any of the p orbits of V determined by T

(Usually, we take I'= Aut G.) V,nV;= @ if i # j. The p orbits partition the vertex
set V:

V=Viu...uV,

Let T; denote a "generic" stabilizer of a vertex v; from V;. It is well-known
that
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I} = VilILil,

(see, for instance, Biggs and White [16]). If Aut G has only one orbit (p=1), G
is said to bc vertex transitive (see, for instance, Biggs [17]).

3. Results

In fact, our main result shows that the Wiener index of a vertex transitive
graph G can be expressed in terms of the distance number of G.

THEOREM 3.1

4
IVIS(G) =2 Y (W(V:)/IVi]).
i=1

COROLLARY 3.2

If G is a vertex transitive graph, then

IVI28(G)

W)= —;

Before we prove theorem 3.1, let us comment on some terms used in the
proof. In the proof, we take T = Aut G. By n(u, v) we denote the number of
automorphisms mapping u into v. If u is a vertex, we denote by I, the stabilizer
group for u. If u and v belong to the same orbit V;, it is true that

n(u,v) = I, = |I|.

Therefore, we may introduce a "generic” stabilizer T} with |T;| = n(u, v).

Proof of theorem 3.1

6(G)= — o(g d
<>]ﬂ2<)ww22(uw

geT gel ueV

il

p
IFHVI 2 2 d(u,v) a(u,v) = Zl

ueV veV [ H [‘:

Y Y du,v)- T
ueV; veV;

w

1 1 ¢
—ﬁimmmwvg d(Vi, Vi),
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Therefore,
L E2W (V)
[VI6(G) = aiv;,,vy) =
2’ iVI E'l Vil
and
P
VIB(G) =2 Y, W(V)/IVil. O
i=1
4, Some implications

First, let us introduce some more concepts. Let us define

IU|2 > Y du,v)= |U|2 d(U,U).

uelU velU
We call w(U) the normalized Wiener index. Clearly, we have
w(U) = 2W(U)/|U)*.

Our thcorem 3.1 has a much more interesting form in terms of w:

§(G) = 171 ZIVIw(V)

In this sense, 6(G) becomes a weighted average of normalized Wiener indices
of orbits of G. Note that §(G) depends solely on the orbit structure of G. This means
that 6(Aut G) = §(T") for any automorphism group I' having the same orbit structure
as AutG.

The computation of the normalized Wiener index w(U/) is somewhat simplified
if U is an orbit.

PROPOSITION 4.3

If V; is an orbit, then

1
w(V;)= 171 d(u,V;) foreachueV; .

Proof

oV;) = ]7]—2 d(\v;, V;) = 1V12 EE{/ d(u,V;).
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However, if # and v are two elements from V;, we have d(u, V.) = d(v, V;). Therefore,

Vild(u, V; .
Wl |d(u, V7).
COROLLARY 4.4

If G is a vertex transitive, then for each vertex u

5(G) = w(V) = l—{’_l d(u, V).

The Wiener index does not consider the symmetry structure of G. In view
of corollary 3.2, we may try to extend the right-hand side formula. Hereby, we
introduce the modified Wiener index W(G) as:

W(G) = 1 IVI*8(G).

This index can be rewritten as follows:

W)

W(G) = V| 2 Vi

i=1

and it takes into account the symmetry structure of G more appropriately than the
standard Wiener index W(G). This observation is the motivation for the present

paper.

5. Examples

In this section, we compare W(G), W(G) and «(G) for several families of
graphs.
Example 5.6

Let us consider the path P, of n vertices. It is easy to see that W(P,)
= (n® - n)/6. Therefore, w(P,) = (n*~ 1)/3n. Also,
n

73 if n iseven,
W(F)= (n=n) . .
—— if n is odd.

Example 5.7

The n-cycle C, is vertex transitive. Therefore,
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) 22nif p s odd,
W(C)=W(C)=1 %

T if n iseven;

o(C,) = ;22- W(C,).

Example 5.8
The complete bipartite graph K, ,. A simple counting argument shows that

W(K,, ) =m*+mn+n*—m-n.
In the case m = n, we set
W(K, ) =3n*—2n.
Since K, , is vertex transitive, we obtain
W(K, ) = 3n2 - 2n.
However, K, ,, m # n is not vertex transitive. Aut K, , has two orbits and we obtain
(m#n) W(Kmp,,) =(m+n)(m+n-2)=m?+2mn+n*-2m-2n.

Note that the formula for W(Km',,) does not reduce to the formula for W(K,,,,,) by
letting m = n. Obviously, we obtain

2 2(m*+ mn+nt—m-—n)

w(Km,n)z WW(K’"’"): (m+n)2

Before we proceed, let us prove a result concerning the Cartesian products
of graphs. Recall the Cartesian product G x H of two graphs G and H: V(G X H)
= V(G) X V(H). The vertices (u;, u,) and (v;, v,) are adjacent if and only if either
u; = vy and u, is adjacent to v, in H or u, = v, and u, is adjacent to v, in G. In the
further text, we will need the following theorem:

THEOREM 5.9
W(GxH)=W(G)- IV(H)*+W(H)- [V(G).

Proof
If Uy c V(G) and U, c V(H), then for U= U, x U,:
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AU, Vy=d(U; xU,, Uy xUj)

= 3 Y d((uy,u2),(v1,72))

(u1,uz) (01,72)

=Y S (d(uy,v1)+ d(uz, v2))

= 22'4(“1 » U1 )+22d(u2,02)

=10, 12 Y S dur, 00)+1U, 1P Y, Y d(uz,v2)

u;p Uy Uz 02

= U, 12d(Uy , Uy ) + Uy |*d(U, , Uy ).

From d(U, U) = |U,|*d(U,, U,) + |U,|*d(U,, U,), we obtain the result from theorem
59 if we let U=U,x U, =V(G) x V(H). O

COROLLARY 5.10

W(GH = kW@GIVGITED.

Proof
By induction on k. d

Example 5.11

Take Q,, the n-cube graph. Since 0, = K5 =K, x K, X. .. x K, (n factors),
we may conclude by corollary 5.10 that

W(Q,) = n-1.22"D=p22n2
Since Q, is vertex transitive, this gives also W(Q,) = n2**~2. Finally,

2 2 n— n
w(Qn) = 'Z'E:W(Qn)z '2—2: .n_zl L —=.

o

Example 5.12

The lattice graph L, , = P,x P, Here, we will use example 5.6 and
theorem 5.9.
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an3—n  om3-m

W(B, XB)=m’W(P)+n*W(P)=m T,
+ -1
W, xP)= mn{m nﬁ)(mn )
Clearly, 5 (m+ n)( 1
WP, XP.)= —=—— W (Pyx P) = 20T )
(mn)? 3mn

In order to determine W(Pm x P,), we would need a theorem for W(G x H). Let us
assume that

ViG)=Viuh,u...uV,

and
ViH)=U,vlU,u... U,

are the orbit partitions of G and H. We will assume that V(G X H) =T, U ... UT,,
is the orbit partition of G X H when T;; =V, x U;.
Under the above assumptions, we may prove the following theorem:

THEOREM 5.13

W(Gx H) = |V(G)[*W (H) +|V(H)I*W (G).

Proof
R P4
W(GxH)=|V(G)xV(H)| Y, Y, W(T; /Tl

i=1 j=1
= VGV X X W (Vi x Up)/(VilIU;1)
P

Vil*W (U;) + Ui 2W (V)
|Uil1V; 1

= VGOIVEI Y X
P

Vil2 « W(U;) Ui 12 « W(V)
VIOHI|IV(H
= IV(GNIV( )1[2 TR R R }
W (H)
= |\V(GIV(H V| ——
IV(G)IIV( )I[Zl IMH)] 121 ,IW(H)J

= VGV [IV(GIW (H) IV (ED+ IV (H)W (G)/IV(G)I

= |V(G)*W (H) + |V(H)|*W (G). O
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COROLLARY 5.14

Under the assumptions, we obtain

W(G*) = kW (G)IV(G) 2,1,

Example 5.12 (revisited)

W(Pm X P,) can be computed from example 5.6 and theorem 5.13. There are
four cases:

3 3
n? - +m? % m even, n even,
3_ 3
, n? =" +m? 5 m odd, n even,
W xpy=y T2
n 5 tme —— m even, n odd,
3_ 3_
n2 B 4m2 22t oodd, n oodd;
n2m2
5~ (m+n) m even, n even,
W(P P) %((mz‘l)"*‘(nzm)) m odd, n even,
X P )=
o 5 (m2n+ (n2 = 1)m) m even, n odd,
ZE((m?=1n+(n?2-1)m) m odd, n odd.

Note that although for m = n the graph P,, x P, is "more symmetric" than for m # n,
we nevertheless have the same orbit structure and the above formulae remain valid.

Correlations between the Wiener index and various chemical and physical
properties of molecules have been extensively studied. Perhaps it would be of
interest to extend similar studies to the modified Wiener index proposed in this

paper.
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