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Abstract 

A modification of the Wiener index which properly takes into account the symmetry 
of a graph is proposed. The explicit formulae for the modified Wiener index of path, 
cycle, complete bipartite, cube and lattice graphs are derived and compared with their 
standard Wiener index. 

1. Introduction 

Chemists employ structural formulae in communicating information on molecules 
and their structure. The structural or molecular graphs are mathematical objects 
representing structural formulae. By manipulating such objects, the chemical structures 
can be characterized numerically. 

A topological index is a numerical quantity derived in an unambiguous manner 
from the structural graph of a molecule. These indices are graph invariants. They 
usually reflect molecular size and shape. 

The first topological index in chemistry was introduced by H. Wiener in 
1947 [1,2] to study the boiling points of paraffins. Since then, the Wiener index W 
has been used to explain various chemical and physical properties of molecules [3] 
and to correlate the structure of molecules with their biological activity [4]. 

The Wiener index of a graph represents the sum of all distances in the graph. 
Various algorithms [5-7] were developed for the evaluation of the Wiener index. A 
number of explicit formulae were derived for the special classes of compounds: 
chains [1], simple cycles [2], cyclic structures with acyclic branches [8], spiro 
systems [9], trees [10], polycyclic compounds [11], especially benzenoids [12-13], 
etc. 

Although the Wiener index has become part of the general scientific 
culture [14], it is still the subject of intensive research [15]. Here, we propose a 
version of the Wiener index which properly takes into account the symmetry of a 
graph. 
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2. Definitions 

Every connected graph G can be regarded as a metric space on the vertex set 
V = V(G) in which the distance d(u, v) between any two vertices is the number of  
edges on the shortest path from u to v. 

The first "topological index" in mathematical chemistry was introduced 
by H. Wiener in 1947 [4]. In our notation, it can be described as follows: 

W(G)  = E E d(u, V). 
u~V v~V 

The Wiener index of  G, W(G), represents the sum of  all distances of  G. 
IfA and B are two sets of  vertices of  G, let us introduce the following notation: 

d ( A , B ) =  ~.~ ~.~ d(u,v) .  
u~A v~B 

This means that 

1 d(V, V). W(G)  = 

Let Aut G denote the group of automorphisms of  G and let g ~ Aut G be any 
automorphism. Define a distance number 6(g) of  g as 

1 ~.~ d(u, g(u)). 
S ( g ) =  IV--] . e v  

S(g) represents the average distance by which g displaces a typical vertex of  G. If 
F is a subgroup of  Aut G, we will denote by 6(F) the average: 

1 ~ 8(g)-  1 ~ v  ~" d(u, g(u)). 6(r) = I r l l v l  

The distance number S(G) of  a graph is simply 

•(G) = 6(Aut G). 

By V i, 1 < i < p, we shall denote any of  the p orbits of  V determined by F. 
(Usually, we take F = Aut G.) V i n V i = ~ if  i ~:j. The p orbits partition the vertex 
set V: 

V= V 1 u .  . . t.J Vp. 

Let F /denote  a "generic" stabilizer of  a vertex vi from V i. It is well-known 
that 
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I r l  = I E I I E I ,  

(see, for instance, Biggs and White [16]). If Au tO  has only one orbit (p = 1), O 
is said to be vertex transitive (see, for instance, Biggs [17]). 

3. Results 

In fact, our main result shows that the Wiener index of a vertex transitive 
graph G can be expressed in terms of the distance number of  G. 

T H E O R E M  3.1 

p 

IVIS(G) = 2 ~ (W(Vi)/IVil). 
i = l  

COROLLARY 3.2 

If G is a vertex transitive graph, then 

]VIZ•(G) 
W(G)  - 

2 

Before we prove theorem 3.1, let us comment on some terms used in the 
proof. In the proof, we take F =  Aut G. By n(u, v) we denote the number of  
automorphisms mapping u into v. If u is a vertex, we denote by F u the stabilizer 
group for u. If u and v belong to the same orbit ~ ,  it is true that 

n(u, v) = I r , , I  = I r v l .  

Therefore, we may introduce a "generic" stabilizer ~ with t e l  = n(u, v). 

Proof  of  theorem 3.1 

1 ~_~ 6 ( g ) -  1 ~.~ ~ d ( u , g ( u ) )  
a(C) = I t - / s~ r  I r l lVl  ~ r  u~v 

1 u~V y-~ d(u, v)" n(u, v) - 
IrllVl v~v 

P 

1 E E Ed(u, ).lrij 

_ 1 ~_~ IFild(Vi, Vi) = ~ d(Vi, Vi). 



56 A. Graovac, T. Pisanski, The Wiener index of a graph 

Therefore, 

P 1 P 
ivta c) = Z Z 

i = l  i=1 

and 
P 

IVl ,5(O) = 2 ~., W ( V i ) I I V ~ I .  
i =1  

2W(Vi) 

[] 

4. Some implications 

First, let us introduce some more concepts. Let us define 

1 ~ ~ d ( u , v ) =  1 
co(U) = IUI - - - Z  ue V ve U ~ d(U, U). 

We call co(U) the normalized Wiener index. Clearly, we have 

co(U) --- 2W(U)/IUI 2. 

Our theorem 3.1 has a much more interesting form in terms of  co: 

1 P 
8(G) = ~ ~ IV~lco04). 

i = l  

In this sense, ~(G) becomes a weighted average of  normalized Wiener indices 
of  orbits of  G. Note that S(G) depends solely on the orbit structure of G. This means 
that 3(Aut G) = 8(F) for any automorphism group F having the same orbit structure 
as Aut G. 

The computation of the normalized Wiener index co(U) is somewhat simplified 
if U is an orbit. 

PROPOSITION 4.3 

If I~ is an orbit, then 

1 
o~(~ ) = .7,. d(u, V~) 

IVil 

Proof 

co( v~ ) = 
1 

IV/I 2 d(Vi, ~ )  - 

for each u e Vi . 

1 
[V/12 £ d(u, Vi). 

ue vi 
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However, if u and v are two elements from V i, we have d(u, Vii) = d(v, Vi). Therefore, 

1 
co(vi) = iv, i--- 5 IVild(u, ~ ). [] 

COROLLARY 4.4 

I f  G is a vertex transitive, then for each vertex u 

1 d(u, V). 
a(G) = ~ ( v ) =  IV-~l 

The Wiener index does not consider the symmetry structure of G. In view 
of  corollary 3.2, we may try to extend the right-hand side formula. Hereby, we 
introduce the modified Wiener index W(G) as: 

1 ]v IZ~(G) .  ~ ( G )  = 

This index can be rewritten as follows: 

P w ( v i )  
( c )  = ivl  Z 

i=1 IVil 

and it takes into account the symmetry structure of G more appropriately than the 
standard Wiener index W(G). This observation is the motivation for the present 
paper. 

5. Examples 

In this section, we compare W(G), I~(G) and og(G) for several families of  
graphs. 

Example 5.6 

Let us consider the path P, of n vertices. It is easy to see that W(Pn) 
= (n 3 -  n)/6. Therefore, co(Pn) = (n z -  1)/3n. Also, 

n3 
^ 5- if n is even, 

W(P~) = (~3_~) if n isodd. 
2 

Example 5.7 

The n-cycle C n is vertex transitive. Therefore, 
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2 
oJ(C.)  = - ;  W ( C . ) .  

if  n is odd, 

if  n is even; 

E x a m p l e  5 .8  

The  comple t e  bipar t i te  g raph  Kin,  n. 

W ( K m , n )  = m 2 + m n  + n 2 - m - n. 

A s imple  count ing  a rgumen t  shows  that 

In the case m = n, we set 

W ( K . , . )  = 3n 2 -  2n. 

Since Kn, n is ver tex  t ransi t ive,  we obtain  

W(Kn, , )  = 3n 2 - 2n. 

Howeve r ,  Kin ,n ,  m -¢ n is not ver tex  transi t ive.  Aut  Kin,  n has two orbi ts  and we obta in  

(m ;e n)  }~Z(gm,n)  = (m + n ) ( m  + n - 2) = m 2 + 2ran + n 2 - 2 m  - 2n. 

Note  that  the fo rmula  for  14Z(Km,.) does  not  reduce to the fo rmula  for  W ( K . , . )  by 
let t ing m = n. Obv ious ly ,  we obtain  

2 2(m 2 + m n  + n 2 - m - n) 
r0(Km,n ) - (m + n) 2 W ( K m , n  ) = (m + n) 2 

Before  we proceed ,  let us p rove  a result  conce rn ing  the Car tes ian  p roduc t s  
o f  graphs.  Recall  the Car tes ian product  G x H o f  two graphs  G and H:  V ( G  x H )  

= V ( G )  x V (H) .  The  ver t ices  (u 1, u2) and (Vl, v2) are adjacent  i f  and on ly  i f  e i ther  

u 1 = vl and u 2 is adjacent  to v 2 in H or  u 2 = v 2 and u I is ad jacent  to vl in G. In the 
fur ther  text,  we will need the fo l lowing  theorem:  

THEOREM 5.9 

W ( G  x H )  = W ( G ) .  IV(H)I 2 + W ( H ) .  IV(G)I 2. 

P r o o f  

I f  U l c_ V ( G )  and U 2 c_ V(H),  then for  U = U 1 x U2: 
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d(U,V)  = d(U1 × U 2 ,  U1 × U 2 )  

= E E d((u1,u2),(1)l,722)) 
(ul ,u2) (vl, vz) 

= E E ( K ( u l '  1)1 ) + a(u2, t)2)) 

= E E a(ul, ~, )+ E Z a(u~, 1)2) 

-- iv212 E Ed(ul,vl)+ iv~ PE  Xe(u2,1)2) 
u I /71 U2 V2 

= IU 1 12d(U2, U 2 ) + IU 2 lad(U1, Ul ). 

From d(U, U) = I UII2d(U2, U2) + I U212d(U1, U1), we obtain the result from theorem 
5.9 i f  we let U = U 1 x U 2 = V(G) X V(H). [] 

COROLLARY 5.10 

W(G k) = kW(G)IV(G)I 2(k-1) 

Proof 

By induct ion on k. [ ]  

Example 5.11 

Take Qn, the n-cube graph. Since Q,  = K~ --- K 2 × K 2 x . . . × K 2 (n factors), 
we may  conclude by corollary 5.10 that 

W(Qn) = n • 1 • 2 2(n- 1) = n22 , -2  

Since Q,, is vertex transitive, this gives also I,~'(Q,)= n 2  2n -2 .  Final ly,  

2 2 22n-2 n 
o)(Qn)= ~ W ( Q n ) =  22 n "n"  = -~. 

Example 5.12 

The lattice graph Lm, ~ 
theorem 5.9. 

= P,,,xP n. Here, we will use example  5.6 and 
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W(P m x P n ) = m 2 W ( p n ) + n 2 W ( P n ) = m  2 n3-n-----~ +n2 m3-m6 

mn(m + n ) (mn-  1) 
W(P,n x P ~ ) =  6 

Clearly, 
2 

o)(P m x P n ) -  (mn) 2 W(Pm xPn)= 
(m + n)(mn- 1) 

3mn 

In order to determine tl~¢(P,~ x P,,), we would need a theorem for ff'(G x H). Let us 
assume that 

and 
v(u) = v~ c: v2 u... u ~, 

V(H) = U l u U 2 u . . .  U Uq 

are the orbit partitions of G and H. We will assume that V(G x H) = Tll co . . .  vo Tpq 
is the orbit partition of G x H when 7",-) = V/x Uj. 

Under the above assumptions, we may prove the following theorem: 

THEOREM 5.13 

ffz (a  x H) = Ig(G)12ff/ (H) + Ig(H)12ff/ (a).  

Proof 
p q 

ff'(G x H) = IV(G) × V(H)I ~ ~ W(Tij)/l~jl 
i=1 j=l 

= IV(G)IIV(H)I ~ ~W(~,'~ × uj)/(IV~llUjl) 
i j 

= IV(G)I IV(H)I ~ ~ IVil2W(Uj ) + IU~I2W(Vj ) 
i j IUil IVj I 

[/~lWi[2 ~ W(Uj) 
: IV(G)IIV(H)I " ~  ' IUjl 

_ _ + ~ I U J l  2 /~W(Vi)  

j IU j l  . IVzl 

[ ~  W(H) VV(H) 
= I V ( G ) I I V ( H ) I  IV,l [V(H)--~ +~lUjl ~ 

] 

= IV(G)I IV(H)I [IV(O)IW(H)/IV(H)I + IV(H)IW(O)/IV(G)I] 

= IV(G)I2VV(H) + IV(H)IZVV(G). [] 
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COROLLARY 5.14 

Under  the assumptions,  we obtain 

W(G k) = k~(G)IV(G)I  2(k-1) 

Example 5.12 (revisited) 

ff'(P,,, × P,)  can be computed  from example  5.6 and theorem 5.13. There  are 
four  cases: 

(?,,, xe . )=  

m 3 n 3 
/'/2 T + m2 2-- m even, n even, 

n 2 m 3-rn m 2 n 3 2 + ~- m odd, n even, 

n 2 m 3 T + m2 n3 -n  2 m even, n odd, 

n 2 m3--m m 2 n3--n 2 + 2 m odd, n odd; 

I nEm 
--T-- (m + n) 

((m 2 - 1 ) n +  (n2m)) 

W(Pm × P ~ ) =  ~ _ ( m 2 n + ( n 2 _  l )m ) 

~ - ( ( m  z -  1 ) n +  (n 2 -  l ) m )  

m even, n even, 

m odd, n even, 

m even, n odd, 

m odd, n odd. 

Note  that a l though for m = n the graph P,, × Pn is "more  symmetr ic"  than for  m ~ n, 
we never the less  have the same orbi t  s tructure and the above  fo rmulae  remain  valid. 

Corre la t ions  be tween  the Wiener  index and var ious chemical  and physical  

proper t ies  o f  molecu les  have been extens ive ly  studied. Perhaps it would be o f  
interest  to cx tend  similar  studies to the modi f ied  Wiener  index proposed  in this 
paper.  
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